skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanveer_Jan, Muhammad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given GPS points on a transportation network, the goal of the Quad-tree Based Driver Classification (QBDC) problem is to identify whether drivers have Mild Cognitive Impairment (MCI). The QBDC problem is challenging due to the large volume and complexity of the data. This paper proposes a quad-tree based approach to the QBDC problem by analyzing driving patterns using a real-world dataset. We propose a geo-regional quad-tree structure to capture the spatial hierarchy of driving trajectories and introduce new driving features representation for input into a convolutional neural network (CNN) for driver classification. The experimental results demonstrate the effectiveness of the proposed algorithm, achieving an F1 score of 95% that significantly outperforms the baseline models. These results highlight the potential of geo-regional quad-tree structures to extract interpretable features and describe complex driving patterns. This approach offers significant implications for driver classification, with the potential to improve road safety and cognitive health monitoring. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026