- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Boateng, Charles (1)
-
Conniff, Joshua (1)
-
Furht, Borko (1)
-
Ghoreishi, Seyedeh_Gol Ara (1)
-
Jackson, Kelley L (1)
-
Jang, Jinwoo (1)
-
Moshfeghi, Sonia (1)
-
Newman, David (1)
-
Rosselli, Monica (1)
-
Tanveer_Jan, Muhammad (1)
-
Tappen, Ruth (1)
-
Yang, Kwangsoo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given GPS points on a transportation network, the goal of the Quad-tree Based Driver Classification (QBDC) problem is to identify whether drivers have Mild Cognitive Impairment (MCI). The QBDC problem is challenging due to the large volume and complexity of the data. This paper proposes a quad-tree based approach to the QBDC problem by analyzing driving patterns using a real-world dataset. We propose a geo-regional quad-tree structure to capture the spatial hierarchy of driving trajectories and introduce new driving features representation for input into a convolutional neural network (CNN) for driver classification. The experimental results demonstrate the effectiveness of the proposed algorithm, achieving an F1 score of 95% that significantly outperforms the baseline models. These results highlight the potential of geo-regional quad-tree structures to extract interpretable features and describe complex driving patterns. This approach offers significant implications for driver classification, with the potential to improve road safety and cognitive health monitoring.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
